Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers

نویسنده

  • Christos Markos
چکیده

The possibility to combine silica photonic crystal fiber (PCF) as low-loss platform with advanced functional materials, offers an enormous range of choices for the development of fiber-based tunable devices. Here, we report a tunable hybrid silica PCF with integrated As2S3 glass nanolayers inside the air-capillaries of the fiber based on a solution-processed glass approach. The deposited high-index layers revealed antiresonant transmission windows from ~500 nm up to ~1300 nm. We experimentally demonstrate for the first time the possibility to thermally-tune the revealed antiresonances by taking advantage the high thermo-optic coefficient of the solution-processed nanolayers. Two different hybrid fiber structures, with core diameter 10 and 5 μm, were developed and characterized using a supercontinuum source. The maximum sensitivity was measured to be as high as 3.6 nm/°C at 1300 nm. The proposed fiber device could potentially constitute an efficient route towards realization of monolithic tunable fiber filters or sensing elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The int...

متن کامل

Supercontinuum Generation in a Highly Nonlinear Chalcogenide/ MgF2 Hybrid Photonic Crystal Fiber

In this paper, we report the numerical analysis of a photonic crystal fiber (PCF) for generating an efficient supercontinuum medium. For our computational studies, the core of the proposed structure is made up of As2Se3 and the cladding structure consists of an inner ring of holes made up As2Se3 and four outer rings of air holes in MgF2. The proposed structure provides excellent nonlinear coeff...

متن کامل

Large and dynamical tuning of a chalcogenide Fabry-Perot cavity mode by temperature modulation.

Te-enriched chalcogenide glass Ge(15)As(25)Se(15)Te(45) (GAST) is synthesized, thermo-optically characterized and used to fabricate a one dimensional photonic crystal cavity mode that is dynamically and reversibly tuned by temperature modulation. The optical cavity mode is designed using GAST and As(2)S(3) glasses after fully determining their temperature dependence of the complex refractive in...

متن کامل

Dispersion Properties of Chalcogenide As2Se3 Glass Photonic Crystal Fiber

In the proposed paper, we report chalcogenide As2Se3 glass Photonic Crystal Fiber (PCF) for dispersion compensating application and also demonstrate other dispersion properties (negative and zero dispersion) of As2Se3 glass PCF in different wavelength windows with hexagonal arrangement of air holes in the cladding using Improved Fully Vectorial Effective Index Method (IFVEIM).

متن کامل

Flattened Dispersion of Hexagonal Chalcogenide As 2 Se 3 Glass Photonic Crystal Fiber with a Large Core

In this paper, we have proposed a novel structure of the fabrication of a chalcogenide As2Se3 glass photonic crystal fiber (PCF) with increased core diameter. As comparision with the normal PCFs in which silica glass is used as core material, the proposed PCF has following feature; firstly we have used the chalcogenide As2Se3 glass as core material in which the first ring area contains no air h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016